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ABSTRACT

We study the dual problem corresponding to a linear program in which

* )the stochastic objective function is replaced by its expected utility, and

discuss its relevance as a penalty method to a stochastically constrained

dual linear program.
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1. INRODUCTION

A Consider a linear programming problem with a stochastic objective function:

. (SO-P) supct

where x E Rn  is the decision vector, A is a given fixed matrix of size m x n
mb is a given fixed vector in R , and c is a random vector with a known distribu-

tion function F (-) , and mean E(c) E Rn

A fundamental decision-theoretic approach to solve problem (SO-P) is the well

known expected utility principle (see for example [9], [5])which reduces problem (SO-P)

to the deterministic nonlinear programming problem:

t
(EU-P) Sup(Eu(c x) Ax < b , x > 0}

where E denotes the mathematical expectation with respect to the random vector c

and u is the decision maker utility function, which is strictly increasing and con-

cave. . The latter property reflects a risk-aversion attitude. (See e.g. the papers

of Arrow [ll and Pratt [6]). Under these conditions problem (EU-P) becomes a concave

*nonlinear programming problem.

. The purpose of this paper is to investigate the dual problem of (EU-P) and to

discuss its relations to the dual linear program of (SO-P):

4 t(SC-D) min{by : A y > c ,y > 0}.

which is a linear program with stochastic constraints. In fact we find it apprupriate

to deal, instead of problem (EU-P), with an equivalent problem

-1 t
(CE-P) sup{u Eu(ctx) :Ax < b ,x > OII-i

where u is the inverse of u . Note that for a random variable T

C(T) a u Eu(T)

A ll ... ILI 
.. 

72



2

is the so-called certainty equivalent of T: It is the suro amount which leaves the

decision maker indifferent to a gamble yielding T, since

u(C(T) = Eu(T).

There are few reasons to prefer the formulation (CE-P) to (EU-P):

(i) In the deterministic case. (c being a degenerate random vector) problem (CE-P)

reduces exactly to the original problem (SO-P), and so the linear structure

of it (and its dual) are recovered.

(ii) According to the Von-Neumann-Morgenstern theory [8], the utility function

is unique up to a monotone increasing affine transformation. If the (EU-P)

formulation is used, the dual problem will depend on the particular choice

of u . This is not the case with the (CE-P) formulation since C(T) is

invariant to affine transformation in u.

There is however some difficulty associated with the objective function

S-: tx -i ct
V(x) = C( ) = u Eu(c X)

of (CE-P); since u 1  is convex, it is not guaranteed that V(x) is a concave func-

tion. We show however, in the next section, that for a large class of utility func-

tions, including the important class of HARA utilities (see [2], (3], [5], [9]) V(x)

is concave regardless of the distribution of the random vector c

Properties of the dual problem of (CE-P) are derived in section 3.

Section 4 outlines the general approach to treat the linear program with

stochastic constraints (SC-D). Approximations are given in section 5.

2. CONCAVITY OF THE CERTAINTY EQUIVALENCE FUNCTIONAL

We assume now and henceforth in this paper that

i) The random vector c = (c,C 2 ,...,cn ) is non-degenerate, i.e. Vx ji 0
tn

c x is not a degenerate univariate random variable.

(ii) E(c tx) < + V x E R

% %
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We denote by [Sk,c k the support of the random variable, by p k its mean and by

a its standard deviation. Let U be the class of twice differentiable

concave utility functions with u' > 0 and u" < 0.
-I

For a given u E U , the inverse function u exists, and it is a strictly mono-

tone increasing convex function. Thus problem. (EU-P) can be transformed into an equi-

valent one:

(CE-P) sup{V(x) A u1 Eu(c Tx) Ax < b x > 0}

Problem (CE-P) is called the certainty equivalent problem.

Note that V(x) is a convex increasing transformation (u- ) of a concave function

Eu(c tx), thus in general V(-) is not necessarily a concave function. To be able to

use the powerful duality theory of convex progrzamning, it is then of major importance

to study conditions under which V(x) is concave.

The next result furnish a complete answer to this question. Surprisingly, the

concavity of V(for arbitrary distribution of the random vector c) is fully charac-

terized in term of the so-called Arrow-Pratt local risk aversion indicator:

r(t) - u(t) (2.1)u '(t)

Theorem 2.1. Let u be a utility function in u . Then the function:

V(x) = u- Eu(c Tx)

is concave for any random vector c if and only if 1 (risk tolerance indi-
r(t)

cator) is concave.

Proof: (The details will appear elsewhere in a future paper and thus are omitted).

Ioutlinel: (i) The concavity of V is established by showing that it satisfies the
A -i

gradient inequality (see [7]). Denoting by .P(t) = u (t), and using

the fact that (P' > 0 , the gradient inequality here is:

%d
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4.4

T T TRn u ~ ) q ~cx < cT(y-x) ](22

Vx,y E Rn  ( (Eu(cTx)) < E[ (Tx) (2.2)

(ii) Given u E U we define h R2 - R by

P (t) - (t

h(tl 1t2) A 1 2

2 V (t)

and show that h is a convex function if and only if r(t is

concave.

t
(iii) Applying Jensen inequality to h(tft 2 ) with t =u(c y) and

11
t= u(ctx) we get the inequality (2.2).

Remark 2.1. The two parameter class of utility functions called hyperbolic absolute

risk aversion (HARA), characterized by r(t) = which is widely

used in economics ([2], [5], [9]) satisfies trivially the condition that

is concave.r(t)

The HARA family consists of the following utilities (defined for t > - b/a)

-e*t/b if a 0, b 4 0

u(t) = log(b+t) if a = 1

(at+b) (a-l)/a if ap 0, a ' 1

A utility function satisfying the condition that l/r(t) is concave will be termed

a CRT-utility (concave risk tolerance).

3. THE DUAL PROBLEM: AN INDUCED u-PENALTY

The dual problem of

(CE-P) sup{V(x) u Eu(c tx) : Ax < b , x > 0}
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is derived via Lagrangian duality. We assume that u is a CRT-utility so (CE-P) is
n Ia concave program. -The Lagjrangian for problem (CE-P) is the function IL:R X R 

with values:

L(x,y)*= V(x) + y t(b-Ax) (3.1)

The dual objective function is defined by:

D(y) = sup[V(x) + y t(b-Ax)1 (3.2)
x>0

and thus the dual problem for (CE-P) is given by:

(CE-D) infly tb + sup[V(x) -y tAx}} (3.3)
y>O x>O

Let

P (Y) supIV(x) - t Ax) (3.4)

Then problem (CE-D) becomes:

t

The first term, ytb is just the objective function of the dual problem of (SO-P):

(SC-D) infib y : A ty > c} (3.6)
SY>I

-~We show below that the second terra, P U(y) plays the role~of a penalty function

for the stochastic constraints in (SC-D), P will be called accordingly u-penalty.
u

Theorem 3.1. The u-penalty function (3.5) is convex and satisfies:

t
Mi Pu (Y) = 0 if A y >p (3.7)

(ii) P (y) >0 if A t y P (3.8)

%. 'A'P .
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Proof: As a pointwise supremum of affine functions, P u(y) is convex.

A t
(i) Let Q(y;x) = V(x) - y Ax then

P (y) = sup Q(y;x) > Q(y;O) = 0 (3.9)
x>0

-l t t
since u E U , by Jensen inequality v(x) = u-Eu(c x) < P x , where

equality holds only for x 0 , and so

t tP (y) = sup Q(y;x) < sup x (P-A y) (3.10)
,V .  x>O

Now if A ty > , the inequality (3.10) shows that P (y) < 0 which
U

together with (3.9) proves (3.7).

(ii) Assume that for some k(k=l,...,n), A

where A is the k-th row of A.

kLet Qk(Y;x) Q(y;0,0,... Xk ...0) = V(xk) - xkATky

%T
Then we have Qk(Y;0) = 0 and d Q (Y;0 - y >

Hence there exists xk > 0 such that:

Qk(Y;xk) > Q(Y;0) = 0 (3.11)

Noting that P (Y) = sup Qk (Y;xk) (3.12)
Rn3x >0

and using (3.11), it follows that P (y) > 0.u

@1I

S..
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The theorem demonstrates that V (y) penalizes solutions of (SC-D) which are not

feasible in the mean.

We say that y 1  is less feasible tha~n y2for the k-th constraint (in the mean)

if:

A t Y > t (.3
k '2 > Y 3.3

and we write ity

The next result shows other desirable properties of the u-penalty. For thle k-th

constraint we define:
k t uYxJ xAy

P (y) -u{~ (3.14}
x >0

Theorem 3.2 The u-penalty function satisfies

Pi ifINhe k k
1 ifY te Pu (y) > Pu (y) (3.15)

(ii) if for some k: ky < ck then P (y) =~(3. 16)
-k U

Proof:

(i) For y 1 > Y2we have by (3.13):

V~x~ k - kk ~k > V(xk) - xk k Y2

and then using (3.14) the inequality (3.15) holds.

(ii) Let T <C .By (3.12) we have:
Ak y< -I

Pu (y) > sup{V(xk x N~.Y) (3.17)
x>0

since u is increasing and ckC (3.17) implies:

-1 T r. T
P(Y) > supfu Eu~cx)-x~y sup{ ck A Y)xl (3.18)

x k - x k0

and hence (3.16) follows. C

% I..
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Theorem 3.2 demonstrates that the u-penalty is monotone in the sense defined

in (3.13)

The second property (3.16) shows that the u-penalty automatically excludes

solutions which are not feasible for (SC-D) in probability 1, since for those

Pu(y)0.

4. LINEAR IROGRiAMMING WITH =.l.'C.IASTIC CONSTRAINTS: A GENEAL APPROACH

In this section we use the prc~erties of the u-penalty studied previously O out-

line a general approach for 14 near programning problem with stochastic constra '=:

inf ytb

(SC) AkY >, C.

y>0

Suppose that the decision-maker accepts a solution y as being "feasible" for the
,t tconstraint > Ck  if A y is "large enough", and rejects solutions y for which

Aty is "too small", i.e. he can choose two positive numbers kl, k such that:

y is feasible if y > k +  (*)

NkY - 'k 1 k

y is infeasible if t < k - k

all other solutions , i.e. y's such that:

k t < p + kla1k 2 -k k 1 k

are "semi-feasible".

(M) If "Feasibility" is modeled by chance constraint [4), i.e. Pr(Ay > c > '
- I A~ > k) > ak'

then kI = F (C k ) where F is the distribution function of the random variable
Ck11 z kk Zk'. Ckukk

° zk = , and ak E [0,1 are prescribed probabilities levels.k- ok  .k

°I'

. . . . . .. ~ % % % % % % . . . . .
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kWe will now build a penalty function P u(y) for the k-th constraint of kSC) whizh

will reflect the above subje..tive attitude for the decision-maker.

Let u be a CRT-utility. For fixed k define:

ak =(k 1 +k)

1 1 kEk (4.1)

8 A (kc+k) (4.2)

k k 1-~k 2k 1 k-ck

and let c* be the random variable:

c* ac +8
k k k k

Trhe penalty function is given by;

P (y) sup [u1 Eu(c*x x A- yU k > k xk k} (4.3)

The coefficients a ',8 were chosen so that:

E(c*) = + k ak k 1 k

c~ ~k ka-kk 2 ks

hence by Theorem 3.1 and Theorem 3.2 (ii) we have:

t
01fN ; ' ka (4.4)

k
P()if A2-k(45

Kpositive otherwise (4.6)

Thus semi-feasible solutions cause a positive, but finite penalty. Moreover, bv

Theorem 3.2 (i), the more they violate feasibility, the more they are penalized. Thuc,
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the approach we advocate for treating the stochastic linear progra& (SC) is to use the

surrogate deterministic program (P):

n
(P) inf {yt + E Pk (y)} (4.7)

y>O k-l

In comparison with problem (CE-D) in (3.5), we use here an additive penalty

(sum of penalties for individual constraints) rather than a joint constraints penalty.

The additive form is clearly advantageous from the computational viewpoint. It is

applicable whenever the decision maker can treat the constraints individually. However

there is one choice of the utility function under which the joint constraints penalty

is additive:

Theorem 4.1. Let u be an exponential utility function:

u(t) a - be-t/P (p>0 , b>0 , aER)

If the random variables cl, c2,,..., c are independents then:
nn

n k
P (Y) E P (y)

k=l u

where here: (y) P sup{-log E(ekk) _ xkty}
Xk>0

Proof: The result follows immediately from the fact that in the case of exponential

utility the certainty equivalent, in terms of which Pu is defined, is Additive.

(See, 12], Theorem 4). a

We close this section by a simple illustrative example. Consider the one dinien-

sional inventory problem:

r (SC) min{hy : y > d ,y > 01

% .
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where h is the unit holding cost and d is the demand. Assume that d % exp(X) with
1 1e-/

mean n = ard o = - (X > 0). Let u(t) = 1 -- Jt/(p> 0); i.e. the rick-avcrsi'ori

indicator is r(t) = - Then by (4.3) the penalty function is:
p

Pu(y) sup{-P log 9+X- -_ )}

where here, by (4.1) - (4.2) : k + k ; p = (l-k2).
1 2

By simple calculus we obtain:

0 if y >(+k

k + k2  y-ji (k 2 +l)

Pu(y) = p{log i y+1i(k2 -1) + p(k + k) if 2

+ if y < p(l-k

Note that p plays here the role of a penalty-parameter. Subsittuting P in (4.7)
U

and solving problem (P) we obtain*kl +k 2

y* = p(l-k2 ) + U 2
2 1 + p (kh+k )

112+

The optimal inventory y* is a monotone decreasing function of both the holding

cost h and the risk-aversion i/p. If either h = 0 or 1/p - 0 (risk neutrality)

then y* equals to the highest value p (l+kl) while if h + or 1/p + (extreme

risk aversion) y* equals to lowest value p(l-k2).

" 5. MEAN VARIANCE APPROXIMATIONS

in this section we derive a quadratic approximation for the u-penalty function

P (y).
Denote the mean vector of c by v , and by V its variance-covariance matrix

(positive definite).

. .
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It can be shown by direct differentiation of the certainty equivalent functional

A-1 t
V 0 u EU(C X)

- that:

* .. V(Q) =0

VV(O) = P

V2V(0)= -r V with r ~ () > 0
0 0 u, (C))

- Using this in (3.4) we obtain:

~aProposition 5.1. A second order approximation of* P (y) is:
U

t t 1 tp (y) = supfx (Ay-1j) - - r x Vxl (5.1)

Thus the approximate u-penalty P~ (y) is given in term of a concave quadratic program. A

direct compution shows that the approximation is exact for the case of exponential util-

ity and c being jointly normal.

For additive penalties, even a more explicit approximation is possible:

n k
*Proposition 5.2. A second order approximation P u(y) of P Y ~P u (y) is:

A (Y 61 A Y) 1 2  (5.2)

u 2r o k=l ak

where a =max(0,a).
+L

Proof: We have to. show that:

k T 2 53
PU() 2r 02 ( )+ 53

S~ Ok
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NOW from Proposition 5.1 we have for the k-th constraint:

P (kly) = sup {x ( -Aky) - roa2 X2}
u x >0 k k k 0 k k

which by simple calculus gives (5.3).

:.J
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